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Abstract: In this article, we consider the problem of estimating some lifetime parameters based on

adaptive progressive Type-II censored sample from the inverse Weibull distribution. Maximum like-

lihood (ML) and Bayesian approaches are used to estimate the unknown parameters, coe¢ cient of

variation, reliability and hazard functions. The Bayes estimators are obtained using both symmetric

and asymmetric loss functions. However, the Bayes estimators do not exist in an explicit form,

Markov Chain Monte Carlo (MCMC) method is used to generate samples from the posterior distri-

bution. Gibbs sampling within Metropolis. Hastings is applied to estimate the lifetime parameters.

Furthermore, asymptotic normality of the ML and MCMC method are employed to construct the

corresponding con�dence intervals. The delta method is used to estimate the variances of coe¢ cient

of variation, reliability and hazard functions. Further, Bayesian two-sample prediction of the future

order statistics as well as the future lower record values are discussed. Proposed methods of esti-

mation and prediction are compared using Monte Carlo simulation study. Finally a real data set is

analyzed for illustration purposes.

Keywords:Inverse Weibull distribution; Adaptive Type-II progressive censoring; Maximum like-

lihood estimation; Bayesian estimation; Symmetric and asymmetric loss functions; Markov Chain

Monte Carlo.

1 Introduction

The inverse Weibull (IW) distribution is received some attention in the literature. Keller and Kamath [1] study

the shapes of the density and failure rate functions for the basic inverse model. If the random variable Y has

a Weibull distribution, then the random variable X = Y �1 has an IW distribution with probability density

function (pdf) given by

f (x;�; �) = ��x�(�+1)e��x
��

; � > 0; � > 0; x > 0: (1)

Notice that here � is a shape parameter which governs the shape of the distribution and � is a scale parameter

which governs the dispersion of the distribution. The corresponding cumulative distribution function (cdf) is

given by

F (x;�; �) = e��x
��
: (2)

The reliability and failure rate functions of IW distribution, respectively, are given by

S(t;�; �) = 1� e��t
��
; � > 0; � > 0; t > 0; (3)

and

H(t;�; �) = ��t���1e��t
��
�
1� e��t

��
��1

: (4)
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It is observed that the hazard function of IW distribution can be monotonic decreasing or unimodal depending

upon the values of �. When � = 1 and � = 2, the IW pdfs are referred to as the inverse exponential and inverse

Raleigh pdfs respectively. For some more discussions on various properties of this distribution (see Kundu and

Howlader [2]).

IW distribution plays an important role in many applications, including the dynamic components of diesel

engines and several data sets such as the times to breakdown of an insulating �uid subject to the action of a

constant tension (see Jiang et al. [3], and Nelson [4] for more practical applications). Extensive work is done

on the IW distribution, for example, Calabria and Pulcini [5] give an elucidation of the IW distribution in the

context of the loadstrength relationship for a component. Maswadah [6] is �tted IW distribution to the �ood

data reported in Dumonceaux and Antle [7].

The coe¢ cient of variation (CV ) is used in numerous areas of science such as biology, economics, and

psychology, and in engineering in queueing and reliability theory (see, for example, Nairy and Rao [8] gave a

summary of uses of the CV in a number of areas. Given a set of observations from IW(�; �), the sample CV is

often estimated by the ratio of the sample standard deviation to the sample mean. Or equivalent,

CV (�) =

h
�(1� 2

� )� �
2(1� 1

� )
i1=2

�(1� 2
� )

; � > 2: (5)

The theory of reliability and life testing experiments is generally applied to analyze various data arising

from diverse �elds of studies such as agricultural, medicine, economics, industrial and survival analysis. Many

of such data are observed using some censoring methodologies. In this connection Type-I and Type-II censoring

are treated as the most common and primary censoring schemes in literature. One of the drawbacks of these

schemes is that they do not allow removing the units from the experiment at any time point other than the

terminal point. To deal with this problem, a more general censoring scheme called progressive Type-II censoring

is used. Progressive Type-II censoring scheme can be described as follows: consider an experiment in which

n units are placed on a life testing experiment and m is a predetermined number of units to be failed. At

the time of the �rst failure x1:m:n, R1 units are randomly removed from the remaining n � 1 surviving units.
Similarly, at the time of the second failure x2:m:n , R2 units of the remaining n � 2 � R1 units are randomly
removed and so on. At the time of the mth failure xm:m:n, all the remaining n �m � R1 � R2 � ::: � Rm�1
units are removed. The progressively censoring scheme R1; R2; :::; Rm are �xed and predetermined prior to the

study. Several generalizations such as hybrid, progressive Type-I, progressive �rst failure, adaptive progressive

Type-II, etc. are also extensively studied by di¤erent researchers using various lifetime distributions. One may

refer to Balakrishnan and Aggarwala [9] and Balakrishnan and Kundu [10] for a detailed review of work done,

particularly, on progressive and hybrid censoring.

Many articles are considered IW distribution under di¤erent censoring schemes. Among others, Kundu and

Howalder [11] considered the Bayesian inference and prediction of the IW distribution for type-II censored data,

Calabria and Pulcini [12] are discussed the MLE and least squares estimations of its parameters. Singh [13] are

discussed the classical as well as Bayesian estimation procedures for the estimation of the unknown parameters

of the IW distribution under conventional Type-I and Type-II censoring schemes. Xiuyun and Zaizai [14]

established the Bayesian estimation and prediction for the IW distribution under general progressive censoring.

For the purpose of increasing the e¢ ciency of statistical analysis as well as saving the total test time,

Ng et al. [15] introduced an adjustment of progressive Type-II hybrid censoring scheme, so called adaptive

progressive Type-II censoring scheme, and analyzed the data under the assumptions of exponential lifetime

distribution of the experimental units. Under this scheme, the number of observed failures m is �xed in advance

but the experimental time is allowed to run over the (pre-�xed) threshold time T > 0. If Xm:m:n < T , the

experiment stops at time Xm:m:n, and we will have a usual progressive Type-II censoring scheme with the

pre-�xed progressive censoring scheme (R1; R2; :::; Rm). If XJ:m:n < T < XJ+1:m:n, where J +1 < m, we adapt

the number of items progressively removed from the experiment upon failure by setting RJ+1 = RJ+2 = ::: =
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Rm�1 = 0 and Rm = n�m�
JP
i�1
Ri:Thus, the e¤ectively applied scheme is (R1; R2; :::; RJ ; 0; :::; 0; n�m�

JP
i�1
Ri),

where J = maxfj : Xj:m:n < Tg, that is, the �rst observed failure time exceeding the ideal total time T . Put
another way, as long as the failures occur before time T , the initially planned progressive scheme is applied.

After passing time T , we do not withdraw any items at all except for the time of the mth failure where all

remaining surviving items are removed. This determination results in terminating the experiment as soon as

the (J + 1)th failure time is greater than T , and the total test time will not be too far away from time T . If

T = 0, the scheme will lead us to the case of the conventional Type-II censoring scheme, and if T !1, we will
have a usual progressive Type-II censoring scheme. This approach illustrates how an experimenter can control

the experiment. The experimenter can decide to change the value of T as a compromise between a shorter

experimental time and a higher chance to observe extreme failures.

Based on the adaptive progressively censored data, several papers are appeared to estimate the unknown

parameter for di¤erent distributions. For example, Lin et al. [16], discussed the ML and approximate MLEs for

the Weibull distribution. Hemmati and Khorram [17], studied the ML and approximate MLEs for the log-normal

distribution. Mahmoud et al. [18], investigated the estimations and Bayes estimates of the unknown parameters

of Pareto distribution. Ashour and Nassar [19] showed the MLE and asymptotic con�dence intervals in the

presence of competing risks. Ismail [20], considered estimation problems of Weibull distribution under step-stress

partially accelerated life test model. AL Sobhi and Soliman [21], discussed the problem of estimating parameters

of the exponentiated Weibull distribution. Recently, Nassar and Kasem [22], discussed the estimation problem

of the unknown parameters of the IW distribution based on adaptive Type-II progressively hybrid censored data.

They used classical and Bayesian estimation methods to estimate the unknown parameters. They obtained the

Bayes estimates based on squared error loss function under the assumption of independent gamma priors using

Lindley�s approximation.

In this work, we propose and evaluate the performance of di¤erent estimators for the unknown parameters

as well as some life parameters (reliability function, hazard function and the CV) of the IW model, under

adaptive Type-II progressively censored data. Many �elds of practical studies including life testing experiments

require di¤erent methods to develop prediction inference in di¤erent sampling framework. Based on the observed

adaptive progressively censored data, the Bayesian two sample prediction interval of a future order statistics as

well as lower record values is considered as a second goal of this paper.

The layout of this paper is organized as follows: In Section 2, we obtain the MLE of �, �, CV , S(t) and

H(t). We also construct asymptotic intervals of unknown parameters based on the observed Fisher information

matrix. In Section 3 Bayes estimates are obtained under the squared error, LINEX and general entropy loss

functions. In Section 4, the problem of prediction is considered under Bayesian framework. To compare the

MLE and the Bayes estimator of the all unknown parameters, Monte Carlo simulation study is performed in

Section 5. Dumonceaux and Antle [7] introduced a data set on the maximum �ood levels data in millions of

cubic feet per second for the Susquehanna River at Harrisburg, Pennsylvania, over 20 four-year periods from

1890�1969. The analysis for the real data set is included in Section 6. Finally, in Section 7, we conclude the

paper.

2 Likelihood Inference and Information Matrix

This section discusses the process of obtaining the MLE of the unknown parameters � and � as well as some

lifetime parameters CV , S(t) and H(t) based on adaptive progressive type-II censoring censored data. Both

point and interval estimations of the parameters are derived.

Given censoring scheme R = (R1; R2; :::; RJ ; 0; 0; :::; 0; n�m�
JP
i�1
Ri), where J = maxfj : Xj:m:n < Tg,
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the likelihood function of the observed data x1; x2; :::; xm is expressed by

L(x;�; �jJ = j) = c(R)
mY
i=1

f(xi;�; �)

jY
i=1

[1� F (xi;�; �)]Ri [1� F (xm;�; �))]R
�
m

= c(R)
mY
i=1

��x���1i exp(��x��i )

jY
i=1

�
1� exp(��x��i )

�Ri �
1� exp(��x��m )

�R�

; (6)

where R� = n�m�
jP
i�1
Ri and

c(R) = n(n�R1�1)(n�R1�R2�2):::(n�R1�R2�:::Rj�1)(n�R1�R2�:::Rj�2):::(n�R1�R2�:::Rj�m+1);

is the normalizing constant and .

Taking the logarithm of L(x;�; �jJ = j) and ignoring the additive constant, we obtain

` = m log ��� (� + 1)
mX
i=1

log xi � �
mX
i=1

x��i +

jX
i=1

Ri log
�
1� exp(��x��i )

�
+R� log

�
1� exp(��x��m )

�
: (7)

By di¤erentiating the associated ` with respect to � and � and equating them to zero, we obtain the following

likelihood equations

m

�
�

mX
i=1

log xi + �
mX
i=1

x��i log xi � �
jX
i=1

Rix
��
i wi log xi � �R�x��m wm log xm = 0; (8)

and
m

�
�

mX
i=1

x��i +

jX
i=1

Rix
��
i wi +R

�x��m wm = 0; (9)

where wi =
h
exp(�x��i )� 1

i�1
:

We observed that these expressions are not in closed form. Therefore, MLEs can be secured through iterative

procedure. Here, we suggest to use Newton Raphson method.

If �̂ML and �̂ML be the MLE�s of unknown parameters � and � respectively. Therefore, the MLE of the

CV, the reliability function and hazard rate function for a speci�ed time t can be expressed as;

dCVML =

h
�(1� 2

�̂ML

)� �2(1� 1
�̂ML

)
i1=2

�(1� 2
�̂ML

)
; (10)

ŜML(t) = 1� e��̂MLt
��̂ML

; (11)

and

ĤML(t) = �̂ML�̂MLt
�(�̂ML+1)e��̂MLt

��̂ML
�
1� e��̂MLt

��̂ML
��1

: (12)

Also, In this section, we obtained the Fisher information matrix for constructing 95% asymptotic con�dence

interval for the parameters. The Fisher information matrix can be obtained by

I�1 =

"
var(�̂) cov(�̂; �̂)

cov(�̂; �̂) var(�̂)

#
=

24 �E
�
@2`
@�2

�
�E

�
@2`
@�@�

�
�E

�
@2`
@�@�

�
�E

�
@2`
@�2

� 35�1
(�=�̂ML;�=�̂ML)

; (13)

where

@2`

@�2
= �m

�2
� �

mX
i=1

x��i log xi + �

jX
i=1

Rix
��
i wi log

2 xi

h
1� �x��i exp(�x��i )wi

i
+�R�x��m wm log

2 xm
�
1� �x��m exp(�x��m )wm

�
; (14)
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@2L (�; �)

@�2
=
�m
�2

�
jX
i=1

Rix
�2�
i exp(�x��i )w2i �R�x�2�m exp(�x��i )w2m; (15)

@2`

@�@�
=

@2`

@�@�
=

mX
i=1

x��i log xi �
jX
i=1

Rix
��
i wi(1� x��i wi) log xi �R�x��m wm(1� x��m wm) log xm; (16)

Unfortunately, the exact mathematical expressions for the above expectations are very di¢ cult to obtain. There-

fore, the approximate con�dence intervals of the parameters are derived based on the asymptotic distributions

of the MLEs of the elements of the vector of unknown parameters � and �. It is known that the asymptotic

distribution of the MLEs of � and � is given by Miller [23].��
�̂ � �

�
;
�
�̂� �

��
! N

�
0; I�1

�
;

where I�1(�̂; �̂) is the variance-covariance matrix of the unknown parameters � and �, obtained by (13) dropping

the expectation operator E: For large value of e¤ective sample size m, the approximate 100(1� )% two sided

con�dence intervals for � and � are respectively given by

�̂ � Z1� 
2

q
var(�̂) and �̂� Z1� 

2

q
var(�̂); (17)

where Zq is the 100q � th percentile of a standard normal distribution.
In order to �nd the approximate estimator of the variance of dCVML, ŜML(t) and ĤML(t), we use the delta

method. The delta method is a general approach for computing con�dence intervals for functions of MLEs, see

(Greene [24]; Agresti [25]). Let

G1 =

�
@CV

@�
;
@CV

@�

�
; G2 =

�
@S(t)

@�
;
@S(t)

@�

�
; G3 =

�
@H(t)

@�
;
@H(t)

@�

�
: (18)

Then the approximate estimator of var
�
ŜML(t)

�
, var

�
ĤML(t)

�
and var(dCVML) are given, respectively, by

vâr
�dCV � ' �

G1I
�1GT1

���
(�̂;�̂)

; vâr
�
Ŝ(t)

�
'
�
G2I

�1GT2
���
(�̂;�̂)

and vâr
�
Ĥ(t)

�
'
�
G3I

�1GT3
���
(�̂;�̂)

(19)

Where, GTi is the transpose of Gi ; i = 1; 2; 3: Theses results yields the approximate con�dence intervals for

S(t), H(t) and CV as

dCVML � z
q
var(dCV ); Ŝ(t)� zqvar(Ŝ(t)) and Ĥ(t)� zqvar(Ĥ(t)). (20)

3 Bayes Estimation

In this section we describe how to obtain the Bayes estimates and the corresponding credible intervals of the

unknown parameters and any function of the them (coe¢ cient of variation CV , reliability S(t) and hazard

function H(t)).

In Bayesian analysis the parameter of interest is to be considered as a random variable and follows some

prior distribution. Here both the parameters �, � are unknown and it is di¢ cult to obtain joint bivariate

prior distribution of the them. So we assume that � and � are independent and a priori distributed as gamma

G(a; b) and G(c; d) distributions respectively with a, b, c and d denoting hyperparameters, which assumed to

be known. The above considered prior may be regarded as a non-informative prior by setting the values of

hyper-parameters is to be zero. Therefore the considered joint prior for (�, �) is then obtained as

�(�; �) = �a�1�c�1e�(b�+d�); a; b; c and d � 0: (21)
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Then by using equation (6) and (21) the joint posterior after simpli�cation can be given as

p(�; �jx) / �m+a�1�m+c�1e�(b�+d�)e
��

mX
i=1

log xi

e
��

mX
i=1

x��i jY
i=1

�
1� exp(��x��i )

�Ri �
1� exp(��x��m )

�R�

:

(22)

We observe that p(�; �jx) is analytically intractable and moreover the Bayes estimator of some parametric func-
tion of (�, �) involves ratio of two integrals. Thus when the Bayes estimates are obtained some approximation

methods should be employed in order to solve the corresponding ratio of integrals. In such a situation, the

most appropriate MCMC methods namely Gibbs sampler and Metropolis�Hastings (MH) Algorithm can be

e¤ectively used. The MH algorithm generate samples from an arbitrary proposal distribution. We assume that

proposal distributions for and are independent normal and then compute the desired Bayes estimates. Samples

generated from the posterior distribution are further used in the construction of highest posterior density inter-

vals for unknown parameters. For implementing the Gibbs with in MH algorithm, the full conditional posterior

densities of � and � are given by

p1(�jx; �) / �m+a�1e
��

0@b+ mX
i=1

x��i

1A jY
i=1

�
1� exp(��x��i )

�Ri �
1� exp(��x��m )

�R�

: (23)

and

p2(�jx; �) / �m+c�1e
��

0@d+ mX
i=1

log xi

1A
e
��

mX
i=1

x��i jY
i=1

�
1� exp(��x��i )

�Ri �
1� exp(��x��m )

�R�

; (24)

and the following steps are required to generate samples from the given posterior distribution:

Step 1: Choose an initial guess of (�, �), say (�(0) = �̂ML; �
(0) = �̂ML):

Step 2: Set i = 1.

Step 3: Generate �(i) from (27) using Metropolis-Hastings algorithm with proposal distribution q(�)=N(�(i�1); var(�̂))

as follows:

a) Let " = �(i�1)

b) Generate �� from the proposal distribution.

c) Accept �� with probability � ("; ��) = min[1; q(")p1(�
�jx;�)

q(��)p1("jx;�) ], or accept " with 1-� ("; �
�) :

Step 4: Generate �(i) from (28) using MH algorithm with proposal distribution q(�)= N(�(i�1); var(�̂))

Step 5: From Equations (3)-(5), compute CV
�
�(i)

�
, S
�
t;�(i); �(i)

�
and H

�
t;�(i); �(i)

�
.

Step 6: Set i = i+ 1:

Step 7: Repeat steps 3� 5 N times.

We discard the initial M number of burn-in samples and obtain estimates using the remaining N � M
samples. Thus Bayes estimates of � and � under the SE loss function can be computed as follows:

~�SE =
1

N �M

NX
i=M+1

�(i):
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Proceeding similarly we can obtain the desired estimates under the LINEX and GE loss functions, respectively,

in the following form

~�LINEX = �
1

c
log

"
1

N �M

NX
i=M+1

e�c�
(i)

#
; (25)

and

~�GE =

"
1

N �M

NX
i=M+1

���

#�1=�
: (26)

where M is burn-in and � = �, �, CV (�), S (t;�; �) or H (t;�; �).

Step 8: To obtain Highest Posterior Density (HPD) interval of � , we order {�(i)} as �(1) < ::: < �(N). Chen

and Shao [26] provided a simple method for constructing a 100(1 � )% HPD credible interval based

on MCMC samples. Let �(i) be the ith smallest of �i and denote Ii =(�(i), �(i+[(N�M)�(1�)])) for

i = M + 1; :::; (N �M) � [(N �M) � (1 � )]. Then Ii with the smallest width among all I 0is is chosen
as the 100(1� )% HPD credible interval for �. Similarly, we can obtain the HPD credible interval for �,

CV (�), S (t;�; �) and H (t;�; �) :

In the next section Bayesian prediction is discussed

4 Bayesian Two-sample prediction

In many business and engineering applications, the experimenters usually wish to predict the future observations

in a population, based on existing data. Here we discuss Bayesian prediction in two-sample situations. We

present the Bayesian predictive distribution for the future order statistics as well as a future record values

based on the observed adaptive Type-II progressive-censored data. It is assumed that only the �rst m adaptive

Type-II progressive-censored observations x =(x1; x2; :::; xm) are observed and we wish to predict the future

sample (order statistics or lower record values) y = (y1; y2; :::; yk) of size k from the same population.

4.1 Bayesian Prediction Interval for Future Order Statistics

Let x =(x1; x2; :::; xm) be a given sample of an adaptive Type-II progressive censored order statistics from

IW (�; �) distribution and (y1 < y2 < ::: < yk) be a future order sample of size k taken also from the same

distribution. We aim to derive prediction interval of y = fy1 < y2 < ::: < yk; g:
The marginal density function of the sth order statistics ys; s = 1; 2; :::; k is given by

g(ysj�; �) =
k!

(k � s)!(s� 1)! [F (ysj�; �)]
s�1

[1� F (ysj�; �)](k�s) f(ysj�; �)

=
k!

(k � s)!(s� 1)!

k�sX
j=0

�
k � s
j

�
(�1)j [F (ysj�; �)]s+j�1 f(ysj�; �)

=
k!

(k � s)!(s� 1)!��y
���1
s

k�sX
j=0

�
k � s
j

�
(�1)je�(s+j)�y

��
s : (27)

Then, the Bayesian predictive density function of ys given x is obtained as follows

ĝ(ysjx) =
Z 1

0

Z 1

0

g(ysj�; �)p(�; �jx)d�d�; (28)

where p(�; �jx) is the joint posterior density of � and � as given in (22). It is immediate that ĝ(ysjx) can not
be expressed in closed form and hence it can not be evaluated analytically. Based on the Monte Carlo method,

(28) can be approximated by

ĝ(ysjx) �
1

N

NX
i=1

g(ysj�i; �i); (28)
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where (�i; �i), i = 1; : : : ; N are generated from from p(�; �jx) by the Gibbs sampling strategy as described in
Section (3). Then the predictive reliability function is established by

G(ysjx) � 1

N

NX
i=1

Z 1

ys

g(zj�i; �i)dz

=
k!

N(k � s)!(s� 1)!

NX
i=1

k�sX
j=0

�
k � s
j

�
(�1)j

"
1� e��(j+s)y��s

(j + s)

#
: (29)

Then, two sided symmetric 100(1�)% Bayesian prediction bounds for ys are obtained by solving the following
equations with respect to ys:

k!

N(k � s)!(s� 1)!

NX
i=1

k�sX
j=0

�
k � s
j

�
(�1)j

"
1� e��(j+s)y��s

(j + s)

#
=


2
(30)

and
k!

N(k � s)!(s� 1)!

NX
i=1

k�sX
j=0

�
k � s
j

�
(�1)j

"
1� e��(j+s)y��s

(j + s)

#
= 1� 

2
(31)

4.2 Bayesian Prediction Interval for Future Record Values

Record values and associated statistics are of great important in several real live problems involving weather,

economic, and sport data. Many properties and applications of record values have appeared in the statistical

literature, among them, see Arnold et al. [27] and Gulati and Padgett [28]. Furthermore, many daily life

�elds such as clinical trials, insurance, industry marketing and others, indicate that Bayesian prediction of

record values has an extraordinary enthusiasm, as the best approach found as of not long ago. Hence, Bayesian

prediction bounds for some record statistics based on di¤erent distributions have been studied by a number of

statisticians, among them, see Ali Mousa et al. [29], Ahmadi and Doostparast [30], Kizilaslan and Nadar [31],

Dey et al. [32] Singh et al. [33] and Shafay et al. [34].

An observation xi will be called a lower record values if its value is less than all previous observations. Thus

xi is a lower record values if xi < xj for every i > j. In this subsection, we aim to predict the Bayesian prediction

intervals of the future lower record values based on the observed adaptive Type-II progressive-censored values.

We assume that (x1; x2; :::; xm) are the observed adaptive progressively type-II censored order statistics from

IW(�; �) distribution, and (zL(1); zL(2); :::; zL(r)) are the �rst r lower records from a future sequence from the

same distribution. Suppose that we are interested in the predictive density of the lower record zL(s), 1 � s � r.
The probability density function of the sth lower record is given (see Ahsanullah, [35]) by

h(zsj�; �) =
1

(s� 1)! f� logF (zsj�; �)g
s�1

f(zsj�; �)

=
1

(s� 1)!�
s�z�s��1s e��z

��
s ; (32)

and the Bayesian predictive density function of zL(s) given x is obtained as follows

h�(zsjx) =
Z 1

0

Z 1

0

h(zsj�; �)p(�; �jx)d�d�; (33)

As before, based on the MCMC samples f(�i; �i); i = 1; 2; :::; Ng (33) can be approximated by

h�(zsjx) �
1

N

NX
i=1

h(zsj�i; �i): (34)
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Hence, the predictive reliability function is established by

H(zsjx) � 1

N

NX
i=1

Z 1

zs

h(tj�i; �i)dt

=
1

N (s� 1)!

NX
i=1

Z 1

zs

�s�z�s��1s e��z
��
s dzs (35)

Moreover, the two sided symmetric 100(1� )% Bayesian prediction bounds for ys are obtained by sby solving

following equations simultaneously:

1

N (s� 1)!

NX
i=1

Z 1

zs

�s�z�s��1s e��z
��
s dzs =



2
(36)

and
1

N (s� 1)!

NX
i=1

Z 1

zs

�s�z�s��1s e��z
��
s dzs = 1�



2
(37)

In the next section a Monte Carlo simulation study is performed to compare the proposed estimation methods.

5 Simulation Results

In this section, we conduct a Monte Carlo simulation study to compare the performance of proposed method

of estimation and prediction. For computation purposes unknown parameters are assigned as � = 3 and

� = 3 . Then an adaptive Type-II progressive-censored sample are generated using various censoring schemes

(n;m;R;T ). mean SEs (MSEs) of all estimators for a given adaptive Type-II progressive-censored sample are

computed based on 1000 replications of it. We compute MLEs of unknowns using the proposed Newtion Rafson

algorithm. Bayes estimates are obtained using MH algorithm. Through, MH algorithm, we take into account

the MLEs as initial guess values, and the associated variance�covariance matrix of � , �. All Bayes estimates

are obtained with respect to gamma prior distributions under the SE, LINEX and GE loss functions. We take

hyperparameters as a = 3; b = 1; c = 3 and d = 1 to compute various Bayes estimates. In Tables 5 � 8,
we report estimated values of both unknown parameters along with associated MSEs for di¤erent censoring

schemes. In these tables for each estimation methods the �rst value denotes the average estimate of the

respective unknown parameter and the immediate lower value denotes the MSE of corresponding estimator.

Di¤erent combinations of (n;m;T ) are taken into consideration for computation purposes. From tabulated

values it is observed that based on MSEs, higher values of n and m lead to better estimates. In Table 9 we

present the 95% coverage probabilities of unknown parameters � and � as well as CV , S(t) and H(t) for di¤erent

adaptive Type-II progressive-censored samples. We have computed 95% asymptotic and HPD intervals of the

unknown parameters � and � as well as CV , S(t) and H(t). We observe that HPD intervals of and perform

better than asymptotic intervals as far as average interval length is concerned. We generated 500 an adaptive

type-II progressive samples of size m = 40 from the IW distribution with the values of parameters (3; 3) ,

T = 0:8, using censoring scheme R1 = :::: = R10 = 1, R11 = :::: = R40 = 0; we constructed 95% Bayesian two-

sided equitailed prediction intervals for the future order statistics and record values, from the same distribution

based on di¤erent cases of censoring are presented in Tables 10 and 11.

6 Data analysis

In this section, for illustration purpose, we consider the following real data set as described in Dumonceaux and

Antle (1973).
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0:654; 0:613; 0:315; 0:449; 0:297, 0:402, 0:379, 0:423, 0:379, 0:324,

0:269, 0:740, 0:418, 0:412, 0:494, 0:416, 0:338, 0:392, 0:484, 0:265:

The data set represents the maximum �ood levels (in millions of cubic feet per second) of the Susquehenna

River at Harrisburg, Pennsylvenia over 20 four-year periods (1890 � 1969). Here, we generated the adaptive
Type-II progressive censored sample from the original measurements. We took, m = 18, T = 0:4, R6 = 2 and

Ri = 0 for i 6= 6: Thus, the adaptive Type-II progressive censored sample based on R is

0:265; 0:269; 0:297; 0:315; 0:324, 0:338, 0:379, 0:379, 0:392,

0:402, 0:412, 0:416, 0:418, 0:449, 0:484, 0:494, 0:613, 0:654:

From the MLEs of model parameters �; �; S(t = 0:3), H(t = 0:3) and CV are obtained as

Parameter MLE Bayes

Estimate Lower Upper Estimate Lower Upper

� 4:5864 2:9832 6:1897 4:6419 4:1691 5:1021

� 0:0085 0 0:0247 0:0079 0:0054 0:0109

S(t = 0:3) 0:8820 0:7684 0:9957 0:8674 0:7160 0:9628

H(t = 0:3) 4:3694 1:4708 7:2680 4:5673 2:1341 7:1048

CV 0:3516 0:3499 0:3532 0:3453 0:3561 0:3605

We also compute the approximate Bayes estimates of �; �; S(t = 0:3); H(t = 0:3) and CV under both LINEX

and GE loss function with c = �1; 1 and q = �1; 1 and they are in Table 1. The posterior mean, median, mode
and standard deviation (SD) and skewness (Ske) of the parameters �; �; S(t = 0:3);H(t = 0:3)and CV are

obtained in Table 2.
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Fig.1 .Trace plots of the parameters generated by the MCMC method for real data:
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Fig 2 Histogram of the parameters generated by the MCMC method for real data:

Taple 1. Bayes MCMC estimates under LINEX and GE for real data:

parameter LINEX GE

c = �1 c = 1 q = �1 q = 1

� 0:0079 0:0079 0:0079 0:0077

� 4:6697 4:6140 4:6419 4:6298

S(t = 0:3) 0:8693 0:8654 0:8674 0:8625

H(t = 0:3) 5:3587 3:8068 4:5674 4:1379

CV 0:3480 0:3474 0:3477 0:3461
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Taple 2. MCMC results for some posterior characteristics for real data:

parameter Mean Mode Median SD Skewness

� 0:0079 0:0073 0:0077 0:0013 0:4139

� 4:6419 4:6478 4:6438 0:2359 �0:0305
S(t = 0:3) 0:8674 0:8949 0:8767 0:0625 �0:8947
H(t = 0:3) 4:5674 4:5410 4:5586 1:2600 0:0486

CV 0:3477 0:3421 0:3459 0:0239 0:4985

For this example, we generate 11; 000 MCMC samples and discard the �rst 1000 values as �burn-in�, based

on them we compute 90% and 95% credible intervals are given in Table 3 and Table 4 for the future order

statistics and future lower record values, respectively.

Table 3: Two sample prediction for the future order statistics

90% (HPD) credible intervals for YS 95% (HPD) credible intervals for YS
YS [Lower,Upper] Length [ Lower,Upper ] Length

Y1 [0:2314; 0:3098] 0:0775 [0:2235; 0:3277] 0:1042

Y2 [0:2535; 0:3402] 0:0867 [0:2415; 0:3490] 0:1075

Y3 [0:2706; 0:3576] 0:0870 [0:2646; 0:3818] 0:1172

Y4 [0:2818; 0:3727] 0:0909 [0:2652; 0:4068] 0:1416

Y5 [0:2930; 0:3898] 0:0968 [0:2789; 0:4407] 0:1618

Table 4: Two sample prediction for the future lower record values

90% (HPD) credible intervals for ZS 95% (HPD) credible intervals for ZS
ZS [Lower,Upper] Length [ Lower,Upper ] Length

Z1 [0:2679; 0:8342] 0:5663 [0:2487; 0:9946] 0:7459

Z2 [0:2314; 0:4855] 0:2541 [0:2341; 0:4843] 0:2502

Z3 [0:2264; 0:3742] 0:1478 [0:2194; 0:3939] 0:1745

Z4 [0:2028; 0:3388] 0:1360 [0:2137; 0:3508] 0:1371

Z5 [0:1958; 0:3090] 0:1132 [0:1970; 0:3211] 0:1241

7 Concluding Remarks

In this article, we considered the ML, and the Bayesian inference and prediction for the parameters , reliability,

hazard rate functions and CV of the IW distribution using the adaptive progressive Type-II censoring scheme.

Also, we develop an approximate con�dence intervals for the parameters , reliability, hazard rate functions and

CV of the IW distribution. A simulation study is conducted to examine and compare the performance of the

proposed methods. It is clear from the tables that the proposed Bayes estimates perform very well for di¤erent

(n;m; and CS R). The results in the tables also reveal the superiority of the Bayesian methods as compared

with the classical method when suitable prior information does become available. The results in these tables

show that the MSEs decreases as the e¤ective sample size, m, increases, as one would expect.
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Table 5. Average mean and MSEs of di¤erent estimates of � and �:

� �

L IN E X G E L IN E X G E

(T; n;m) C S M LE SE c = �1 c = 1 q = �1 q = 1 M LE SE c = �1 c = 1 q = �1 q = 1

(0:8; 50; 40) I 3:1136 3:0866 3:0859 2:9707 3:0866 3:0106 3:0773 3:0688 3:0685 3:0122 3:0688 3:0315

0:3474 0:2699 0:2696 0:2147 0:2699 0:2421 0:1381 0:1161 0:1160 0:1027 0:1161 0:1090

I I 3:1915 3:1614 3:1608 3:0396 3:1614 3:0833 3:1205 3:1065 3:1062 3:0482 3:1065 3:0686

0:3775 0:2920 0:2915 0:2139 0:2920 0:2506 0:1603 0:1374 0:1373 0:1185 0:1374 0:1271

I I I 3:2147 3:1727 3:1720 3:0486 3:1727 3:0937 3:1617 3:1434 3:1431 3:0837 3:1434 3:1051

0:4423 0:3305 0:3299 0:2423 0:3305 0:2842 0:1835 0:1530 0:1529 0:1287 0:1530 0:1396

(0:8; 50; 45) I 3:1654 3:1352 3:1345 3:0119 3:1352 3:0552 3:1160 3:1026 3:1023 3:0392 3:1026 3:0613

0:3342 0:2628 0:2624 0:1963 0:2628 0:2271 0:1373 0:1112 0:1111 0:1012 0:1112 0:1003

I I 3:1636 3:1289 3:1283 3:0080 3:1289 3:0507 3:1102 3:0957 3:0954 3:0329 3:0957 3:0548

0:3515 0:2718 0:2713 0:2110 0:2718 0:2354 0:1400 0:1270 0:1268 0:1080 0:1270 0:1150

I I I 3:1531 3:1212 3:1205 3:0023 3:1212 3:0441 3:1067 3:0923 3:0919 3:0299 3:0923 3:0516

0:3517 0:2774 0:2769 0:2118 0:2774 0:2429 0:1505 0:1262 0:1261 0:1076 0:1262 0:1159

(0:8; 60; 45) I 3:0938 3:0687 3:0681 2:9685 3:0687 3:0028 3:0815 3:0686 3:0684 3:0138 3:0686 3:0326

0:2741 0:2216 0:2213 0:1701 0:2216 0:2012 0:1318 0:1090 0:1100 0:1007 0:1090 0:1002

I I 3:1634 3:1379 3:1374 3:0351 3:1379 3:0717 3:1068 3:0930 3:0927 3:0374 3:0930 3:0567

0:2744 0:2231 0:2228 0:1789 0:2231 0:2013 0:1322 0:1114 0:1213 0:1048 0:1114 0:1125

I I I 3:1196 3:0928 3:0923 2:993 3:0928 3:0278 3:0838 3:0698 3:0695 3:0143 3:0698 3:0334

0:2791 0:2253 0:2250 0:1794 0:2253 0:2014 0:1503 0:1258 0:1257 0:1050 0:1258 0:1151

(1:4; 50; 40) I 3:1556 3:1255 3:1248 3:0031 3:1255 3:0460 3:0857 3:0744 3:0742 3:0175 3:0744 3:0370

0:3912 0:2966 0:2962 0:2222 0:2966 0:2505 0:1382 0:1134 0:1134 0:1000 0:1134 0:1071

I I 3:1645 3:1315 3:1309 3:0123 3:1315 3:0547 3:0788 3:0656 3:0653 3:0086 3:0656 3:0281

0:3919 0:2971 0:2966 0:2230 0:2971 0:2009 0:1400 0:1148 0:1147 0:1001 0:1148 0:1073

I I I 3:3138 3:2673 3:2666 3:1358 3:2673 3:1855 3:0567 3:0411 3:0409 2:9869 3:0411 3:0052

0:5049 0:3733 0:3726 0:2584 0:3733 0:2116 0:1411 0:1141 0:1140 0:1035 0:1141 0:1089

(1:4; 50; 45) I 3:1454 3:1251 3:1244 2:9977 3:1251 3:0416 3:0627 3:0601 3:0598 2:9988 3:0601 3:0196

0:3026 0:2394 0:2389 0:1789 0:2394 0:2064 0:1372 0:1111 0:1120 0:1001 0:1111 0:1008

I I 3:1596 3:1255 3:1248 3:0058 3:1255 3:0481 3:0966 3:0808 3:0804 3:018 3:0808 3:0396

0:3857 0:2374 0:2270 0:1866 0:2374 0:2500 0:1405 0:1132 0:1131 0:1005 0:1132 0:1039

I I I 3:1343 3:1050 3:1044 2:9879 3:1050 3:0281 3:0828 3:0695 3:0692 3:0075 3:0695 3:0287

0:2956 0:2274 0:2270 0:1758 0:2274 0:1998 0:1517 0:1234 0:1233 0:1076 0:1234 0:1150

(1:4; 65; 45) I 3:1632 3:1472 3:1466 3:0314 3:1472 3:0724 3:0850 3:0791 3:0788 3:023 3:0791 3:0424

0:3017 0:2334 0:2330 0:1988 0:2334 0:2091 0:1374 0:1106 0:1105 0:1008 0:1106 0:1003

I I 3:1557 3:1266 3:1261 3:0241 3:1266 3:0606 3:1121 3:0956 3:0953 3:0388 3:0956 3:0585

0:3049 0:2490 0:2486 0:1918 0:2490 0:2192 0:1340 0:1129 0:1128 0:0973 0:1129 0:1043

I I I 3:0120 3:0021 3:0124 2:9865 3:0021 3:1078 3:0462 3:0456 3:0184 3:0005 3:0456 3:0265

0:2845 0:2123 0:2245 0:1912 0:2123 0:2198 0:1423 0:1224 0:1213 0:1005 0:1224 0:1120

With each scheme the �rst value represents the average relative estimate

and the second value represents MSE.
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Table 6. Average mean and MSEs of di¤erent estimates of S(t) :

S(t)

LINEX GE
(T; n;m) CS MLE SE c = �1 c = 1 q = �1 q = 1

(0:8; 50; 40) I 0:8811 0:8747 0:8747 0:8741 0:8747 0:8731

0:0012 0:0011 0:0011 0:0011 0:0011 0:0015

II 0:8865 0:8800 0:8800 0:8794 0:8800 0:8785

0:0013 0:0011 0:0011 0:0011 0:0011 0:0012

III 0:8862 0:8791 0:8791 0:8785 0:8791 0:8776

0:0014 0:0013 0:0012 0:0012 0:0013 0:0012

(0:8; 50; 45) I 0:8850 0:8782 0:8782 0:8775 0:8782 0:8766

0:0012 0:0011 0:0012 0:0012 0:0011 0:0012

II 0:8841 0:8773 0:8773 0:8767 0:8773 0:8758

0:0013 0:0013 0:0013 0:0013 0:0013 0:0013

III 0:8837 0:8770 0:0267 0:8764 0:8770 0:8755

0:0014 0:0013 0:0013 0:0013 0:0013 0:0013

(0:8; 60; 45) I 0:8807 0:8749 0:8748 0:8743 0:8749 0:8735

0:0011 0:0011 0:0011 0:0011 0:0011 0:0011

II 0:8862 0:8804 0:8804 0:8799 0:8804 0:8792

0:0011 0:0010 0:0010 0:0010 0:0010 0:0010

III 0:8832 0:8774 0:8774 0:8768 0:8774 0:8761

0:0011 0:0010 0:0010 0:0010 0:0010 0:0011

(1:4; 50; 40) I 0:8838 0:8773 0:8773 0:8766 0:8773 0:8756

0:0014 0:0012 0:0012 0:0012 0:0012 0:0012

II 0:8851 0:8785 0:8785 0:8779 0:8785 0:8770

0:0014 0:0012 0:0012 0:0012 0:0012 0:0012

III 0:8966 0:8894 0:89 0:8894 0:8894 0:8880

0:0014 0:0011 0:0011 0:0011 0:0011 0:0011

(1:4; 50; 45) I 0:8783 0:8783 0:8783 0:8776 0:8783 0:8766

0:0012 0:0012 0:0012 0:0012 0:0012 0:0012

II 0:8843 0:8777 0:8777 0:8770 0:8777 0:8762

0:0012 0:0012 0:0012 0:0012 0:0012 0:0012

III 0:8840 0:8774 0:8773 0:8767 0:8774 0:8758

0:0012 0:0011 0:0012 0:0012 0:0011 0:0012

(1:4; 65; 45) I 0:8857 0:8800 0:8800 0:8793 0:8800 0:8785

0:0012 0:0012 0:0012 0:0012 0:0012 0:0012

II 0:8846 0:8790 0:8790 0:8785 0:8790 0:8777

0:0012 0:0012 0:0012 0:0012 0:0012 0:0012

III 0:8770 0:8783 0:8845 0:8741 0:8783 0:8643

0:0012 0:0012 0:0012 0:0012 0:0012 0:0012

With each scheme the �rst value represents the average relative estimate

and the second value represents MSE.
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Table 7. Average mean and MSEs of di¤erent estimates of H(t):

H(t)

LINEX GE
(T; n;m) CS MLE SE c = �1 c = 1 q = �1 q = 1

(0:8; 50; 40) I 0:7697 0:7864 0:7864 0:7734 0:7864 0:7523

0:0295 0:0262 0:0262 0:0255 0:0262 0:0269

II 0:7585 0:7742 0:7742 0:7614 0:7742 0:7401

0:0295 0:0267 0:0267 0:0257 0:0267 0:0274

III 0:7669 0:7852 0:7851 0:7719 0:7852 0:7505

0:0322 0:0293 0:0293 0:0279 0:0293 0:0293

(0:8; 50; 45) I 0:7638 0:7807 0:7806 0:7672 0:7807 0:7452

0:0267 0:0244 0:0244 0:0232 0:0244 0:0244

II 0:7659 0:7829 0:7828 0:7696 0:7829 0:7483

0:0276 0:0264 0:0264 0:0259 0:0264 0:0251

III 0:7667 0:7829 0:7828 0:7698 0:7829 0:7486

0:0296 0:0267 0:0267 0:0254 0:0267 0:0265

(0:8; 60; 45) I 0:7760 0:7895 0:7895 0:7778 0:7895 0:7595

0:0220 0:0203 0:0203 0:0210 0:0203 0:0204

II 0:7593 0:7727 0:7726 0:7616 0:7727 0:7435

0:0223 0:0208 0:0208 0:0220 0:0208 0:0201

III 0:7655 0:7789 0:7788 0:7679 0:7789 0:7502

0:0220 0:0205 0:0205 0:0196 0:0205 0:0204

(1:4; 50; 40) I 0:7598 0:7769 0:7768 0:7631 0:7769 0:7404

0:0315 0:0249 0:0279 0:0278 0:0249 0:0266

II 0:7523 0:7690 0:7689 0:7564 0:7690 0:7353

0:0291 0:0256 0:0256 0:0248 0:0256 0:0286

III 0:6938 0:7138 0:7259 0:7137 0:7138 0:6801

0:0293 0:0261 0:0236 0:02470 0:0261 0:0289

(1:4; 50; 45) I 0:7719 0:7718 0:7718 0:7570 0:7718 0:7321

0:0280 0:0240 0:0250 0:0248 0:0240 0:0260

II 0:7615 0:7776 0:7775 0:7643 0:7776 0:7427

0:0290 0:0255 0:0255 0:0242 0:0255 0:0275

III 0:7622 0:7916 0:7780 0:7651 0:7916 0:7441

0:0267 0:0257 0:0242 0:0230 0:0257 0:0242

(1:4; 65; 45) I 0:7564 0:7709 0:7708 0:7574 0:7709 0:7351

0:0271 0:0232 0:0220 0:0232 0:0232 0:0251

II 0:7666 0:7793 0:7792 0:7680 0:7793 0:7497

0:0270 0:0245 0:0255 0:0232 0:0245 0:0251

III 0:7615 0:7816 0:7672 0:7741 0:7816 0:7220

0:0277 0:0247 0:0232 0:0235 0:0247 0:0252

With each scheme the �rst value represents the average relative estimate

and the second value represents MSE.
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Table 8. Average mean and MSEs of di¤erent estimates of CV:

(T; n;m) CS c = �1 c = 1 q = �1 q = 1

(0:8; 50; 40) I 0:6914 0:6744 0:6740 0:6766 0:6744 0:6736

0:0242 0:0228 0:0235 0:0257 0:0228 0:0246

II 0:6708 0:658 0:6577 0:6726 0:658 0:6703

0:0272 0:0243 0:0240 0:0257 0:0243 0:0249

III 0:655 0:7100 0:7096 0:6837 0:7100 0:662

0:0272 0:0265 0:0266 0:0267 0:0265 0:0267

(0:8; 50; 45) I 0:6720 0:6618 0:6615 0:6745 0:6618 0:6704

0:0225 0:0228 0:0224 0:0227 0:0228 0:0226

II 0:6781 0:6696 0:6692 0:6704 0:6696 0:6758

0:0266 0:0243 0:0232 0:0257 0:0243 0:0246

III 0:6787 0:6704 0:6699 0:6707 0:6704 0:6164

0:0262 0:0255 0:0251 0:0252 0:0255 0:0257

(0:8; 60; 45) I 0:6849 0:6697 0:6694 0:6747 0:6697 0:6724

0:0220 0:0217 0:0218 0:0219 0:0217 0:0219

II 0:6753 0:6600 0:6596 0:6760 0:6600 0:6743

0:0236 0:0227 0:0232 0:0237 0:0227 0:0226

III 0:6900 0:6743 0:6739 0:6774 0:6743 0:6749

0:0252 0:0245 0:0241 0:0252 0:0245 0:0247

(1:4; 50; 40) I 0:6807 0:6660 0:6655 0:6411 0:6660 0:6782

0:0239 0:0229 0:0235 0:0237 0:0229 0:0237

II 0:6876 0:6745 0:6740 0:6777 0:6745 0:6745

0:0268 0:0253 0:0254 0:0257 0:0253 0:0259

III 0:6968 0:6830 0:6826 0:6762 0:6830 0:6731

0:0270 0:0255 0:0250 0:0260 0:0255 0:0257

(1:4; 50; 45) I 0:6951 0:6825 0:6821 0:6722 0:6825 0:6768

0:0228 0:0219 0:0225 0:0227 0:0219 0:0227

II 0:6800 0:6735 0:6731 0:6746 0:6735 0:6694

0:0255 0:0253 0:0254 0:0251 0:0253 0:0251

III 0:6871 0:6780 0:6775 0:6884 0:6780 0:6832

0:0253 0:0250 0:0251 0:0252 0:0250 0:0250

(1:4; 65; 45) I 0:6848 0:6670 0:6667 0:6720 0:6670 0:6798

0:0223 0:0217 0:0215 0:0217 0:0217 0:0217

II 0:6720 0:6730 0:6661 0:6714 0:6730 0:6791

0:0240 0:0221 0:0222 0:0221 0:0221 0:0219

III 0:6671 0:6740 0:6675 0:6784 0:6740 0:6732

0:0248 0:0241 0:0251 0:0246 0:0241 0:0244

With each scheme the �rst value represents the average relative estimate

and the second value represents MSE.

Table 9. 95% coverage probabilities for � ; � ; S(t); H(t)and CV based on di¤erent methods.

� � S(t) H(t) CV

(T; n;m) CS MLE MCMC MLE MCMC MLE MCMC MLE MCMC MLE MCMC
(0:8; 50; 40) I 0:9600 0:9560 0:9520 0:9500 0:9180 0:9600 0:9400 0:9540 0:9500 0:9560

I I 0:9540 0:9520 0:9440 0:9360 0:9140 0:9440 0:9320 0:9520 0:9440 0:9540

I I I 0:9460 0:9460 0:9400 0:9320 0:9080 0:9300 0:9300 0:9340 0:9080 0:9380

(0:8; 50; 45) I 0:9620 0:9740 0:9560 0:9600 0:9180 0:9620 0:9580 0:9620 0:9520 0:9580

I I 0:9520 0:9540 0:9540 0:9560 0:9000 0:9540 0:9400 0:9560 0:9420 0:9520

I I I 0:9460 0:9540 0:9420 0:9540 0:9140 0:9520 0:9320 0:9520 0:9380 0:9500

(0:8; 60; 45) I 0:9600 0:9620 0:9560 0:9600 0:9520 0:9620 0:9580 0:9600 0:9620 0:9700

I I 0:9520 0:9580 0:9560 0:9560 0:9460 0:9580 0:9440 0:9580 0:9520 0:9540

I I I 0:9460 0:9580 0:9520 0:9540 0:9320 0:9540 0:9420 0:9540 0:9380 0:9580

(1:4; 50; 40) I 0:9580 0:9620 0:9460 0:9540 0:9220 0:9580 0:9500 0:9500 0:9520 0:9560

I I 0:9520 0:9600 0:9400 0:9520 0:9140 0:9520 0:9440 0:9480 0:9500 0:9520

I I I 0:9480 0:9580 0:9220 0:9480 0:9140 0:9320 0:942 0:9460 0:9180 0:9380

(1:4; 50; 45) I 0:9620 0:9680 0:9520 0:9620 0:9400 0:9560 0:9520 0:9620 0:9540 0:9560

I I 0:9560 0:9560 0:9520 0:9600 0:9320 0:9420 0:9420 0:9520 0:9500 0:9540

I I I 0:9400 0:9560 0:9480 0:9540 0:9420 0:9460 0:9400 0:9520 0:9480 0:9500

(1:4; 60; 45) I 0:9740 0:9760 0:9600 0:9640 0:9600 0:9620 0:9620 0:9640 0:9600 0:9740

I I 0:9600 0:9740 0:9540 0:9580 0:9500 0:9580 0:9560 0:9580 0:9580 0:9620

I I I 0:9460 0:9540 0:9520 0:9580 0:9500 0:9500 0:9420 0:9460 0:9480 0:9640
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Table 11: Two sample prediction for the future lower record values

95% HPD credible intervals for ZS
ZS [Mean Lower,Mean Upper] Mean Length

Z1 [0:4847; 2:7175] 2:2328

Z2 [0:3714; 2:0253] 1:6538

Z3 [0:3141; 1:2818] 0:9677

Z4 [0:2731; 0:9978] 0:7247

Z5 [0:2535; 0:8206] 0:5671
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